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Summary 
 

The movements in the orbital field of water waves of unlimited and limited water depth are attributed to 
the interaction of their transverse and longitudinal vibration components. In contrast to the linear wave 
theory and to higher order theories too, in which the continuity condition is also not fulfilled, a reflection 
process is assumed concerning the description of the wave transformation due to decreasing water depth. 
On the one hand, reference is made to the definition of the complex reflection coefficient 𝛤𝛤 = 𝐶𝐶𝑟𝑟𝑒𝑒𝑖𝑖𝛥𝛥𝜑𝜑 
(CRC), according to Büsching (2012) [1], whose characteristics represent the consideration of the phase 
difference ∆ϕ between the incident and the reflected wave. On the other hand, the method of "exponentially 
reduced reflection" that Schulejkin (1956) [2] used regarding the horizontal floor, which fulfills the condi-
tion of continuity, is extended to the range of floor slopes 0⁰ ≤ α ≤ 90⁰. 
Accordingly, two theoretical boundary conditions are assumed: On the one hand, the positive Clapotis, the 
characteristic of which is a linearly polarized vertical transverse oscillating movement in the antinode (or 
on a vertical wall of slope inclination α = 90ᵒ), and on the other hand the negative Clapotis, which is char-
acterized by a linear polarized horizontal rocking motion on the bottom (α = 0ᵒ) of a shallow sea. 
The observable forms of formation of partially standing waves (interference phenomena) are attributed a 
priori to the phase differences mentioned (phase jumps Δϕ ). The latter in turn depend on the inclination of 
the seabed near the coast. The phase shift Δϕ given by the slope inclination α determines the positioning of 
the rotated elliptical orbital paths on inclined slopes in the surf zone. Apart from superimposed drift flow 
and non-linear compression effects in nature, the shape and inclination of such predictable orbital paths 
should be decisive for the formation of the different forms of breaking waves. The washing movement that 
occurs after wave breaking (wave run-up and run-down) corresponds approximately to the linearly polar-
ized swinging movement of the negative Clapotis. 
In addition to the continuity condition that has now been fulfilled, the consideration of the phase shift Δϕ 
probably means, that a further link that was previously missing to describe the wave transformation due to 
decreasing water depth has been found. If necessary, a future consideration of the phase shift Δϕ could also 
mean a paradigm shift in surf research including the tsunami problem, even with non-linear theories. 
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Preface 
 

This version of this article was intended for the student readers of my "Coastal Engineering Repetitorium" 
(http://hydromech.de ). For these, the multiple explanations of similar contexts still contained are likely to 

be more helpful than superfluous. An appropriately shortened text, also intended for publication, is in 
preparation. It is recommended that you read Chapters 1 and 14 first. Due to incorrect translation from 

German, at some positions the comma is used instead of the dot in mathematical expressions. 
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1. Detailed summary 
 
Caused by wave resonances observed in nature and model on steep shore formations on the one 
hand and by phase jumps on moderate to flat-inclined embankments on the other hand, the author 
had defined the reflection coefficient as a complex quantity [1], [3] 

The objectives of this article are: 

• Securing the theoretical and practical findings regarding the complex reflection coefficient 
(CRC) using the example of model studies carried out in the wave channel. 

• The explanation of the wave transformation in the delimited coastal orbital field a priori as 
an interference phenomenon, caused by slope-dependent phase jumps. 

• To contribute to the awareness of the spectral analysis methods used by the author, and 
to present their advantages in terms of the description of the near-surface deformation 
processes of the waves. 
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Oriented on the linear wave theory (Airy-Laplace), the author assumes the verified decrease in the 
orbital circle diameter with the water depth according to the known exponential law but uses only 
the basic trigonometric functions in linear vibration theory. 

The orbital field considered comprises on the one hand the wave movements generated at the 
interface water-air (water level deflections (WLD) and on the other hand fixed boundaries with 
different inclinations. The transformation of the waves in the range of decreasing water depth is 
treated a priori as a reflection problem, whereby the place of reflection depends on the inclination 
of the fixed boundary. 

As an incident wave of height Hi = 1, the kinematics of the deep-water wave is used as a cosine 
wave. 

The author puts the orbital velocities in the foreground of his investigations and includes phase 
shifts 0⁰ ≤ Δϕ ≤ 180⁰ and slope inclinations 0⁰ ≤ α ≤ 90⁰ in the view, referring to the definition of 
the complex reflection coefficient CRC. In addition, the mirroring method used by (Schulejkin, 1960 
[2]) with regard to the kinematics of a shallow sea with a horizontal seabed is taken into account. 
This is extended by the author to inclinations 0⁰ ≤ α ≤ 90⁰ and is referred to by the term "exponen-
tially reduced reflection (mirroring)" (ERR). 

Chapter 5: In the most well-known example of the total reflection of water waves on an ideally 
smooth vertical wall, in which there is no phase difference between incoming and reflected waves 
(Δϕ = 0⁰) particularly the linearly vertically polarized particle vibration in the edge streamline is 
taken into view. In the case of unlimited water depth at the wall, the term "positive (deep water) 
Clapotis" is used in a more precise way. On the other hand, in a shallow sea in the (flat inclined) 
edge streamline (on the ground), a linearly polarized particle oscillation arises, which is here re-
ferred to as the appearance of the "negative (flat water) Clapotis". The latter is created analogously 
to the positive Clapotis by a horizontal mirroring, but with a phase jump of Δϕ = 180⁰. Both Clapotis 
types are considered as theoretical boundary structures, the former appearing as a transversal os-
cillation with double maximum amplitude and the second as longitudinal oscillation with double 
maximum elongations. 

Chapter 7: For the general case of reflection on inclined flat surfaces the relationship between hor-
izontal phase displacement Δϕ and slope inclination 𝛼𝛼 

∆𝜑𝜑 = 180° − 2𝛼𝛼 
has been found by the author. 

The applicability of the above equation is impressively demonstrated by the degree of consistency 
with the results of the relevant model studies, which the author had already reported on in 2013 
as part of the definition of the CRC: 

For the slope of inclination studied in the hydraulic model 1:n = 1:2 (corresponding to   
α = 26,57⁰ or Δϕ = 126,86⁰) the phase shift between the incident and the reflected wave was cal-
culated there, with respect to a partially standing “Partial wave” of an energy spectrum, as an arith-
metic mean: 

Δ𝜑𝜑 = 132.6°+123.2°
2

 = 127.9°» 126.860. 

The comparable values to be averaged for the Δϕ were taken into account, considering the different 
distances of the (imperfect) antinodes ηmax or nodes ηmin distant from the intersection (IP) of the 
slope with the still water level. 
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Chapter 8: According to the application of the ERR, the waves coming in from the deep water at 
circular orbital velocities are superimposed on the exponentially reduced mirrored circular orbital 
velocities of the reflected waves with opposite rotational sense. 

This is realized here by the fact that 8 (or 16 respectively) orbital circle vectors regularly distributed 
on the circumference of the orbital circle of the incident waves are superimposed with the respec-
tive exponentially reduced mirrored ones. Analogous to the superimposition of potential currents, 
the tangents of the resulting orbital orbits are obtained as a result on the one hand and the corre-
sponding orbital velocity magnitudes at their contact points on the other hand. With increasing 
distance from the fixed edge streamline, elliptical orbital paths result, whose axes perpendicularly 
to the edge streamline grow at the expense of the axes parallel to the edge streamline. 

At the fixed inclined boundaries - as with the above defined negative Clapotis - there are the men-
tioned linear polarized vibrations of the water particles in the edge streamline. This is due to the 
fact that here the circular orbital velocities of the incident and mirrored kinematics - according to 
the continuity condition - are to be superimposed in the same size but with opposite signs. 

Examples of the construction of elliptical orbital paths using the graphical vector addition are shown 
in relation to the configuration of the hydraulic model for the layer depth d2 = 0.412m and for the 
still water level (d0 = 0m) in Figures 8 and 9 and for inclined embankments in Figures 13 to 16. In 
addition to the magnitudes of the resulting orbital velocities changing with the position, the shape 
of the orbital paths can be adjusted quite precisely to the totality of the tangential velocity vectors 
by means of a drawing program.  

For example, for the alternative exact vector addition, the tabular scheme for two consecutive 
phase points on the orbital circuit is given, which provides the vector inclinations and magnitudes 
as well as the equations of the ellipse tangents. 

The continuity condition is also taken into account by the use of the ERR in that the disappearance 
(or reduction) of the orbital velocity components normally to the fixed flow boundary is connected 
with the doubling (or corresponding magnification) of the orbital velocity components parallel to 
the edge streamline. 

Chapters 9 and 10: In order to represent the applicability of the ERR method for the whole range of 
eligible seabed inclinations between 0⁰ und 90⁰ (0 ≤ α ≤ 90), or to distinguish between positive or 
negative reflection, the subdivision of the regular wave cycle to 16 phase points (with angular dis-
tances of 22.5⁰) is also used for the tabular vector calculations.  

Taking into account the phase difference Δϕ, dependent from α, on the one hand and the exponen-
tially reduced mirrored orbital circle diameters on the other, the resulting water level deflections 
ζres and the magnitudes Wi of the orbital velocities also can be determined formally by the superim-
position of properly phase-shifted cosine functions, see Figures 19 to 23. 

Following the concept of the ERR, the resulting water-level deflections ζ(d0.i) (with I ≤ i ≤ IV) result 
from the sums of the incoming orbital circle diameters and the exponentially reduced orbital circle 
diameters shifted by Δϕ .The resulting orbital velocity magnitudes W(d0.i) are calculated from the 
component sums of the incoming and phase-shifted exponentially reduced mirrored velocities. 

Chapter 11: The ordinate values obtained here as dimensionless sizes of unit functions are con-
verted into dimension-related wave heights or orbital velocities, see. Tab.2.  
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These represent the basis for the representation of the development of the water level deflections 
near the intersection IP of the inclined edge stream line with the still water level (SWL) compared 
to the circular incoming wave of the constant height  = 0.3m, see Figures 25 and 26.  

Thus, the maximum water level deflections ζres with wave heights H ≥  H(circ) at inclinations α ≥ 45⁰ 
can be attributed to the positive reflection and at lower inclinations with the wave height H < H(circ) 
to the negative reflection. 

Another notable result is that the positions of the oscillation nodes for inclinations 0⁰ < α < 90⁰ ap-
pear to deviate so from the still water level that in the vibration cycle they are in pairs both  hori-
zontally and vertically dependent on the predetermined inclined edge streamline, see Table 3 and 
Fig. 24. In particular, from the sequence of functions ζres with respect to the 5 from slope α = 90⁰ 
(Fig.19) to α = 90⁰ decreasing inclinations (Fig.23) the successive displacement by each Δβ = 22.5⁰ 
of the vibration antinodes and the nodes can be observed. 

Chapter 12: Finally, the essential result of the dependence of the phase shift between incident and 
reflected regular cosine waves from the seabed inclination and the resulting interference is sum-
marized in pointer diagrams for the CRC. 

The striking result is: 

For smooth slopes, theoretical complex reflection coefficients arise, which depend on the prese-
lected slope inclination only. 

The inclination of the slope studied in the model α = 26.57ᵒ, corresponding to phase shift ∆ϕ = 
126,87ᵒ occurs together with the magnitude Cr = 1۰cos ∆ϕ = 1 cos 126.87ᵒ = -0.60. 

Thus, the complex reflection coefficient CRC can be considered not only for the inclination of locally 
existing reflection objects, but in addition to the linear wave theory globally with regard to the 
ground contact depending on the sea bottom inclination: 

       𝛤𝛤 = 𝐶𝐶𝑟𝑟𝑒𝑒𝑖𝑖𝛥𝛥𝜑𝜑 = 𝐶𝐶𝑟𝑟𝑒𝑒𝑖𝑖�1800−2𝛼𝛼� =  𝐶𝐶𝑟𝑟𝑒𝑒𝑖𝑖1800𝑒𝑒−𝑖𝑖2𝛼𝛼 

= 𝐶𝐶𝑟𝑟(cos 𝜋𝜋 + 𝑖𝑖 sin 𝜋𝜋) ∙ 𝑒𝑒−𝑖𝑖2𝛼𝛼 = −𝐶𝐶𝑟𝑟 ∙ 𝑒𝑒−𝑖𝑖2𝛼𝛼 =
−𝐶𝐶𝑟𝑟

𝑒𝑒𝑖𝑖2𝛼𝛼 

2. Introduction 
 

The role of reflection in surf research. 

The phenomenon of reflection of coastal ocean waves had been largely ignored in the analysis of 
natural and laboratory studies, especially with regard to the breaking of waves on shallow beaches 
for more than a third of a century. One reason for this may have been the fact that only the idea of 
positive reflection existed in water waves, especially since the wave theories dating back to the 
19th century (according to Gerstner, Airy/Laplace, Stokes, etc.) did not contain any further ap-
proaches to this. As a symptomatic for such a limited view, it should be mentioned that both in the 
author's dissertation in 1974 "On orbital velocities of irregular surf waves" [4], as well as in the 
previous relevant studies of about 30 authors analyzed therein, the term "reflection" could hardly 
be found, [4]. 
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Nevertheless, the attentive observer was able to perceive the phenomenon of reflection in differ-
ent forms visually even on flat sloping sandy beaches. However, Shoemaker and Thijsse (1949) [5] 
had already given an indication of suspected phase shifts.  

Only after the author's finding of the alternative of the “partial negative reflection", 
(Büsching,2010), which additionally occurs when taking into account a phase shift Δϕ (phase jump) 
between the incident and reflected wave, did it become plausible why, for example, the frequently 
measured, approximately ground-parallel horizontal orbital velocities during wave breaking could 
not lead to sufficiently satisfactory explanations. 

However, if breaking waves are assigned to the oscillation anti node of an imperfect negative Clapo-
tis with an imperfect node near the impact point of the slope by the still water level (IP), their 
streamline image may tend to be very in line with the kinematics in the oscillation anti node of 
partially standing waves. 

 

 
Fig.1: Phases of a breaking wave (plunging / surging breaker) at a phase jump due to partial nega-
tive reflection on a slope: In phases 3 and 4, opposite water level deflections take place on both 
sides of the imperfect Clapotis node, which coincides with IP, approximately. In the theoretical 

case of negative total reflection, the washing motion can be approximated as a linearly polarized 
oscillation around point IP. 

 

In order to make the difference between positive and negative reflection clear, the theoretical vi-
brational forms of a basin with different lateral boundaries with respect to the longitudinal axis, i.e. 
with on the one hand a vertical wall and on the other hand an inclined wall, are shown in Fig.2. For 
this purpose, the author has specified the corresponding natural vibration formula as follows: 
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Thus, with appropriate excitation in a wave channel, both forms of (partially) standing waves can 
be represented together. While there is an oscillation anti node (of a positive Clapotis) on the ver-
tical wall (possibly also at a wave flap), there is a partial negative Clapotis on the inclined wall (ap-
proximate) of the vibration nodes of a partial negative Clapotis. The applicable natural vibration 
formula is accordingly based on perfectly standing uneven quarter waves [6]. 

Transferred to the excitation of rope waves, the case shown on the left corresponds to the articu-
lated attachment of the rope to a wall (at IP) and on the right side the case of the free rope end. 
In nature, on the other hand, either case or the other will occur only, depending on the nature of 
the reflective structure, i.e. partially standing waves as a result of partially negative or partially pos-
itive reflection, unless it is resonance in a basin configuration. 

On natural coasts, which are characterized by a dune formation with offshore flat and sandy beach 
- as is the case with the island of Sylt -both cases are to be distinguished depending on the current 
water level: At high storm surge water level there is positive reflection from the relatively steep 
dune embankment, the cliff or the sea wall on the one hand and negative reflection on the other 
hand at normal water levels from the flat sandy beaches. [7]. In contrast to the model situation of 
the wave channel, the natural frequency formula (3) is applicable for both expressions in the case 
of resonance, which is based on perfectly standing half-waves. 
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References to further texts of the author necessary for understanding are given in the relevant 
context. In particular, it is recommended to have one of the texts [1] or [8]. 

 

Fig.2: The first 4 theoretical natural modes of the contents of a basin with a vertical and an in-
clined wall at distance D. 

(2) 

 

(1) 

(3) 
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3. Compilation of the symbols and abbreviations used, as well as the 
characteristic dimensions and parameters relating to the model studies 
carried out. 
 
α = Slope angle; in the physical model the inclination 1: n = 1:2 (α = 26.57⁰)  
IP =Point of intersection of the slope line and the still water level (SWL).  
β = Phase angle in the wave cycle; also measured inclination angle of the long elliptical main axis.  
ηmin , ηmax = Horizontal distance of the vibration node or of the vibration antinode of (par-
tially) standing waves with reference to IP 
ζ (β) = Water level deflection (WLD) as a function of the phase angle β  
Δϕ = Phase shift between incoming and reflected (mirrored) wave; phase jump  
I , II, III, IIIa  and IV = Reflection axes perpendicular to the local ground inclination 
d = Layer depth calculated from the still water level (SWL); if necessary with 2 indices sepa-
rated by a dot. 
d0.i = d0.i = Points of intersection of the water level with the axes of reflection I ≤ i ≤ IV. 
d3.I = d3.I = 0.626m marks the (constant) depth in the area of the of the flat bottom of the used 
wave channel, cf. Fif.12 
ξ = Mirror depth = vertical distance of the considered wave field point from the intersec-
tion of the mirror axis with the edge streamline of the ground. The negative mirror depth  ξ´ des-
ignates the mirrored point beyond the edge streamline of the ground; also breaker index. 
ξ0.I = 0.626m = d3.I refers to the depth of the water level above the horizontal channel bottom. 
D = Orbital circle diameter 
H0 = 2 r0 = 0.3m = D0, nominal partial wave height as a reference value for determined 
unit wave heights; simultaneously incident wave height of the circularly polarized deep wa-
ter wave. 
Cr = Hr/Hi = Quotient of reflected and incident wave height. 
𝛤𝛤 = Complex reflection coefficient (CRC)       𝛤𝛤 = 𝐶𝐶𝑟𝑟𝑒𝑒𝑖𝑖𝛥𝛥𝜑𝜑.  
L = 3,8m (2.90m < Li < 4.40m), nominal wavelength representative for i = 5 par-
tial waves from a spectral evaluation, cf. Fig. 11. 
T = 1/f = 1.99s (1.684s < Ti < 2.105s) nominal (representative) wave period. 
c = L/T = 1,91m/s Phase velocity  
W = Orbital velocity magnitude 
W0 = π·D0/T = 0.47m/s corresponding nominal orbital velocity at the SWL as a refer-
ence value for determined unit orbital velocities. 
circ = Index of parameters of circular orbital motion in deep water 
 
More abbreviations: 
ERR = Exponential Reduced Reflection 
PC = Positive Clapotis = perfectly standing transverse wave 
NC = negative Clapotis = perfectly standing longitudinal wave 
WLD = Water level deflection 

4. Circular orbital oscillation resulting from two equal frequency, perpen-
dicular oscillations at 90⁰ phase difference. 
 

The following theoretical consideration of the wave movement over a deep sea assumes that the 
wave field is ideally interspersed with horizontal and vertical vibrational movements of the same 
frequency. This is prompted by the fact that in the most diverse fields of mechanics the movement 
on a circle is represented as a circular polarized vibration. This arises in a special case in that two 
linearly polarized oscillations of the same amplitude and frequency meet perpendicularly with the 
phase difference of a 1/4 period, i.e. with a phase difference Δϕ = 90⁰ (π/2). This may be repre-
sented as an interaction of cosine and sinewaves. 
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As is well known, this principle is realized, for example, in the drive of the electric motor, and in its 
reversal also in the power generator driven by a turbine. Here it is intended to serve as a model for 
the orbital movement observed in water waves in deep water, such that the latter are regarded as 
a combination of relatively long-wave longitudinal and transverse waves. It should already be em-
phasized at this point that phase shifts (phase jumps, phase differences) seem to be able to create 
an extremely important phenomenon in the interference of vibrations in general, especially in nat-
ural processes. Especially since depending on the size of the phase shift also linearly or elliptically 
polarized vibrational movements (Lissajous figures) can be generated, see below. 

With regard to the circular orbital movements of a deep sea, the generator principle is to be con-
sidered here for the time being. The disturbance induced by the consequences of wind-generated 
(horizontal) impulses and gravity action in the form of a circular polarized oscillation is assumed to 
be the origin of two linearly polarized oscillations perpendicular to each other. Accordingly, on the 
surface, the progressive waves spreading horizontally and on the other hand, vertically spreading 
vibrations could arise on the surface. The latter would be subject to an exponentially increasing 
attenuation with the depth, as these are represented, for example, according to the linear wave 
theory (Airy–Laplace) in the decrease of the orbital circle diameter according to the known expo-
nential law, cf. Fig. 4. 

With the arrangement selected in Fig.3, the circular polarized oscillation (circular oscillation clock-
wise, red) is created in such a way that the specified phases 1 to 8 are passed synchronously from 
left to right synchronously with phases 1' to 8' from top to bottom in the specified order. The center 
of the circle remains also for subsequent wave cycles at the location. 

If, conversely, the circular motion is assumed to be the origin (source), the wave forming at the 
surface would move to the right out of the image, while the vertical linear polarized oscillation 
would continue below the water level with the exponential damping to the depth of about half a 
wavelength. 

In the following, the orbital movements that result from the water surface (index 0) are mainly 
considered when both oscillations progress by steps of 1/8 and 1/16 period (T/8 and T/16 respec-
tively). 

In contrast to the pictorial representation of wave interferences (especially in the representations 
of the reflection phenomenon) which are often limited to the water-level deflections ζ, here the 
vectors of the circumferential velocities W = π·D/T are assigned to the wave or oscillation phases 
respectively. According to this, in the present arrangement in Fig.3 for each resulting vibration 
phase, the "velocity moment" M = W·D, which sets the direction of rotation clockwise. 
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In order to replicate real water waves existing in nature, however, the effect of mass transport 
would have to be recorded separately taking into account an additional drift current.  

On the other hand, asymmetric storm waves in the deep water (on the open sea) could already 
arise as waves with non-circular orbital movements, if the phase difference between the generating 
approximately persecuting linearly polarized waves meet with a phase difference of Δϕ ≠ 90⁰ (π/2). 

5. Detection of phase jumps in waves in the hydraulic model 
 
Convinced that the known wave theories would hardly be helpful to verify the findings obtained in 
the wave channel of the FH Bielefeld University of Applied Sciences (specifically for the use of a 
complex reflection coefficient), relationships with the known theoretical shallow water approaches 
- besides the decrease of the orbital circle diameter according to the known exponential law – had 
not been made.  

Rather, with regard to the kinematics of water particles in the area of decreasing water depth in 
the context of this article, the author confines himself to the application of only the basic trigono-
metric functions in the linear oscillation theory. The aim is to recognize functional connections to 
the phenomenon of phase shift in reflection found in the model and to present them primarily 
graphically. 

A complete analytical formulation of the intended supplement of linear wave theory should be re-
served for a further publication if necessary.   

Fig.3: With the chosen arrangement of two vertically polarized vibrations, 
a circular polarized vibration (circular oscillation clockwise, red) is cre-
ated. The specified phases 1 to 8 are continuously traversed from left to 
right synchronously with the phase-shifted phases 1' to 8' from top to 
bottom in the specified order. The vectors of the circumferential veloci-
ties W = πD/T are assigned to the relevant wave phases. According to this, 
in the present arrangement for each resulting vibration phase, the "ve-
locity moment" M = W·D and the direction of rotation is clockwise. 
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Fig.4: Orbital circle diameter D[m] for water depths in the wave channel above (or below) the 
channel bottom relative to a nominal wave height H = 0.3m and the wavelength L = 3.8m, which 

come from the results of the relevant model studies, see. Fig. 5. 

Instead of the progressive pressure changes, the focus here should be on the consideration of the 
orbital movements changing in the wave field from circular to elliptical. 

Adapted to the range of model dimensions, the orbital diameters D according to the relationship 

        

can be taken from Fig.4. 

In the theoretical treatment, particular reference is made to the real dimensions of the relevant 
model configuration, see Fig. 5. 

The corresponding graph with reference to the geometry of the model configuration in the wave 
channel used contains Fig. 5.  

 

 D = 𝐷𝐷0𝑒𝑒−2𝜋𝜋𝑑𝑑
𝐿𝐿  (4) 
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Fig. 5: Design of the elliptical orbital paths at water depths d < L/2 by superimposing the reflected 
kinematics of a deep sea in the positive mirror depth range of 0.626m according to the analytical 
formulation with reference to Schulejkin (1956). Further explanations, in particular in Chapter 6. 

 

The relatively small maximum water depth d3 = 0.626m << L/2 is known to cause deformations of 
the orbital paths, the extent of which affects not only the close range of the flow, but the entire 
flow field. Of essential importance is the respective shape of the fixed edges of the wave field, since 
no vertical movements are possible for these. 

Existing nonlinear theories for wave movement in the range of decreasing water depths have often 
been tested for their applicability with only moderate success. This applies in particular to the de-
scription of the flow processes in (relatively small-scale) wave channels. The author, however, tried 
to provide a clear interpretation of the basic physical processes. 

The approximately spiral orbital motion, which can be generated by a superimposed drift current, 
on the one hand, the wave breaking on the other hand and other wave-deforming "compression 
effects" observed in the wave channel and resulting nonlinearities are not addressed [8] here.   

  



 
 
 

13 
 

 
6. Importance of boundaries for kinematics in orbital velocity field 
 

The most striking practical example of the reflection of water waves is the kinematics of the incom-
ing and reflected waves on an ideally smooth vertical wall, see Fig.6. 

 

Fig.6: The water level deflections of two counter-rotating regular cosine waves are shown. The or-
bital vectors are assigned to the orbital vectors according to direction and magnitude. The hori-
zontal reflection without phase jump (∆𝜑𝜑 = 0°)results in a vertical linearly polarized oscillation 

of the water particles, for example on a vertical wall (mirror). 

 

If a progressive wave train hits such a wall, a mirror-image wave train is thrown back by it. It is well 
known that the superimposition of incident and reflected waves produces a standing wave, which 
is classified as positive Clapotis according to the above definition. This is the result of two equally 
interconnecting waves without the appearance of a phase jump between them, as wave crests are 
reflected by wave crests and wave troughs through wave troughs.(∆𝜑𝜑 = 0°)  This fact applies again 
not only to the water particle movement at the water surface in relation to the still water level 
(SWL) but in a similar way also in relation to the layer depths lying below with the associated orbital 
circuit decreasing according to the specified exponential law with the water depth, see Fig.4. 

With regard to the resulting orbital velocities, it is of particular importance in the reflection that the 
orbital movements of the incoming and the reflected waves have an opposite sense of rotation. In 
the case of the circular orbital motion, the velocities of the reflected wave at the point of reflection 
(interference point) are equal to those of the incoming orbital motion. As a result, when both are 
superimposed, their horizontal components are removed, while the mirror-parallel vertical compo-
nents double. That is, on the vertical wall as well as in all Clapotis antinodes (loops) the vector 
addition of the originally circular movements of the incoming and the reflected wave for a wave 
cycle results in the vertical linearly polarized oscillation of a transverse wave with maxima ±2W0. 
Conversely, at the vibration nodes, the horizontal speed components reach their maxima at the 
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expense of the vertical components with a value of ±2W0  Conversely, at the vibration nodes, the 
horizontal  speed components reach their maxima at the expense of the vertical components with 
a value of ±2W0 . 

W0 is the circumferential velocity of the water particles on the orbital circle at the water surface of 
a deep sea according to W0 = πD0/T with a diameter D0 equal to the wave height H relative to the 
wave period T. 

This unit value W0 can be assigned for the surface of each considered wave phase, and it is also 
considered a reference value for the lower (exponentially reduced) velocities at the layer depths 
below. For the interference studies carried out here, bases for the orbital velocity vector were se-
lected on the orbital circuit, depending on the accuracy requirement per wave cycle 8 or 16, regu-
larly distributed on the circumference. 

Provided that the orbital movements of a deep sea at a layer depth less than half the wavelength 
are synchronous with those on the surface, the simultaneous observation of two circular orbital 
paths in different layer depths i and n, the relationship between the magnitudes of the velocity 
vectors concerned are as follows: 

 

 

That means that the circumferential velocities W behave like the orbital path diameter D, 
where n ≠ i. 

Thus, for the time being, no concrete values for wave height H and period T are required. Rather, 
unit-circle observations at the orbital circles of the water surface are sufficient to determine the 
velocities resulting from the vector addition according to magnitude and direction as well as the 
associated resulting water level deflections ζ. The same applies to the layer depths positioned be-
low the water surface. 

For the successive overlay phases 1+1', 3+3', 5+5', 7+7', ... the respective velocity resulting from the 
vector addition by magnitude and direction can be determined at the respective orbital circle (unit 
circle with the radius H/2) for the interference point, cf. Table in Figure 6. 

In the Clapotis phases, in which the maximum positive or negative water level deflections double 
(phases 1+1' and 9+9'), the sign change of the vertical vibration direction of the water particles 
takes place. That is, the current orbital velocities of the opposing waves cancel each other's entire 
wave field. In the following vibration phases, especially in the oscillation loops of the Clapotis (as 
well as at the interference point (position of the vertical wall), only the horizontal components of 
the orbital vectors cancel each other, so that the positive Clapotis on a wall gets the character of a 
transversal wave. The maximum vertical orbital velocities when swinging through the still water 
level are ±2W0 (phases 5+5' and 13+13'). 

Since the vertical components in (and below) the oscillation nodes cancel each other, the horizontal 
oscillation movements there theoretically also reach their maximum values of ±2W0. The corre-
sponding swinging directions (directions of the streamlines of the positive Clapotis) run accordingly 
perpendicular to the shown velocity vectors canceling each other. 

  

𝑊𝑊𝑖𝑖
𝑊𝑊𝑛𝑛 

 = 𝜋𝜋∙𝐷𝐷𝑖𝑖
𝑇𝑇

∙ 𝑇𝑇
𝜋𝜋∙𝐷𝐷𝑛𝑛

 = 𝐷𝐷𝑖𝑖
𝐷𝐷𝑛𝑛

 (5) 
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Theoretical negative Clapotis 

 

 

Fig.7: On the horizontal seabed, the horizontal reflection (mirroring) at the phase jump of  
∆𝜑𝜑 = 180° corresponds to  vertical reflection at the ground (or water level) with the phase  

difference ∆𝜑𝜑 = 0°, see also Fig. 16. 

 
In contrast to the positive Clapotis (PC), the author uses the term "negative Clapotis" (NC) for a 
vibration in which the phase jump (phase difference) between the incoming wave and the reflected 
wave is ∆𝜑𝜑 = 180°. In this case, wave crests would in principle be reflected through wave troughs 
and vice versa. Such a configuration is only theoretically conceivable, in the event that the (ficti-
tious) kinematics of a deep sea on the (horizontal) seabed of a shallow sea is reflected exponentially 
reduced. Such a study was carried out by Schulejkin (cf. [2] and Chapter 6). But he did not consider 
a link with the phenomenon of a phase difference of interfering waves. In fact, there is no complete 
extinction of water level deflections on the surface. Rather, the theoretical term refers to the sea-
bed, which is conceived as a mirror, on which similar kinematic processes take place as described 
above for the reflection on the vertical wall. As already shown in Fig.5 in relation to the flat ground 
of the wave channel, there is also the superimposition of two orbital circles of the same size with 
opposite sense of rotation. As a result, in this boundary case, the standing wave appears as a hori-
zontal linearly polarized oscillation motion at the bottom of a shallow sea, in the sense of a longi-
tudinal oscillation, which, for example, changes in pressure in sound waves (compression and dilu-
tions of the molecular distances). 

If the construction of the resulting orbital velocities is carried out according to the same principle 
as for the positive Clapotis by horizontal reflection on a vertical mirror, however, in relation to the 
horizontal seabed (in the model for water depth d3), the vector additions for the successive overlay 
phases 1+1', 3+3', 5+5', 7+7' ... by magnitude and direction are again tracked at the orbital circle 
(unit circle) shown with respect to the present water depth, cf. Table in Fig.7. 
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In the Clapotis phases, in which the maximum amounts of the water level deflections are reduced 
to zero (1+1' and 9+9'), the vertical components of the current circumferential velocities cancel 
each other according to the continuity condition, with the result that the horizontal components 
reach their maximum positive or maximum negative magnitude of ± 2W3. In the intervening phases, 
the magnitude zero is gradually reached in each of the reverse points. 

7. Orbital movement in a shallow sea 
 
In order to illustrate the change in the kinematics of the wave field in the consideration of the bot-
tom in a more illustrative and physically comprehensible way, Schulejkin (1956) deviated from the 
usual mathematical derivation of the water particle movement and instead also uses a method of 
mirroring [2]. Thus, the orbital motion can be constructed with ground contact from that of the one 
without ground contact (of a deep sea). For this purpose, the ground is understood in a depth 
d  <  L/2 as a mirror in such a way that the orbital kinematics, which continues exponentially reduced 
behind the mirror according to equation (4), superimposes the orbital kinematics that initially exist 
in front of the mirror. 

For this purpose, Schulejkin had derived mathematically the algebraic formulations of the horizon-
tal and vertical orbital coordinates of the orbital velocities for water particles on elliptical orbits in 
a shallow sea, however related to the boundary condition of the horizontal flat ground only. 

The author subsequently extends the application of this method in such a way that he also adapts 
it to horizontally deviating flow boundary (inclined seabed, especially flat embankments). At the 
same time, the orbital velocities of partially standing waves are determined by magnitude and di-
rection using the graphical or computational vector addition. The input data is based on the model 
dimensions used in the own model studies. In order to make the results comparable with the model 
studies, these are taken into account in Figs. 5 and 12 on a scale basis. 

The geometry shown there is accordingly oriented to the configuration and results of the laboratory 
tests for a smooth revetment of inclination 1: n = 1: 2 in the wave channel, whose water depth was 
d = 0.626m. Thus, the length L = 3.8m of the partial wave of the partial frequency range 
0.4875Hz  ≤ f ≤  0.51875Hz was examined in more detail, see. Büsching (2011) [1], and Fig.11.  

Since the studies in question are based on the analysis of the energy values of partially standing 
waves (instead of measuring the heights of incoming and reflected waves), the wave height param-
eter H  =  D  =  0.3m used below, does not represent a measured value, but is to be regarded only 
as an exemplary input value Hi of a wave coming in from the deep water. 

A prerequisite for the graphical-computational representation or determination of the orbital 
movements in the area at and above the flat channel bottom (in Fig.5) is the choice of suitable 
scales for the geometry and the orbital velocity. 

According to the reflection concept, the horizontal bottom of the wave channel (seabed) is initially 
considered non-existent and the orbital movements of a deep sea decreasing with the depth are 
present according to equation (4), cf. Fig.5. 

According to this, for the positive local coordinate ξi emanating from the ground, the water particles 
would move around the center of a circle with the corresponding radius ri 
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Here, the orbital motion is represented analogously to the above observation of 8 wave phases by 
each at 8 evenly distributed on the circumference orbital vectors Wi of equal amount.  

The same would apply in turn to the movement of water particles at the level of the bottom and 
below.  

When mirroring the circular orbital movements present at a distance -ξ under the ground, these 
are to be superimposed on the corresponding circular orbital movements above the ground at a 
distance of +ξ, but with the opposite sense of rotation.  

As a result, for each layer depth above the ground, the resulting orbital path is obtained as an el-
lipse, the long horizontal half-axis of which is equal to the sum of the radii of the generating orbital 
circles (in the deep sea) and whose short half axis is determined by the difference of the two radii 
in question. 

Thus, for a shallow sea with flat ground, one can say that the effect of the boundary condition, 
usually referred to as "bottom contact", can be characterized more clearly and precisely as a reflec-
tion effect of the seabed. The mirrored orbital velocities to be superimposed only enter at a fraction 
of the incoming local orbital velocities, depending on the respective mirror distance. 

In addition, the continuity condition is taken into account here in that the disappearance of the 
vertical oscillation movement at the ground comes with the doubling of the horizontal oscillation 
on the ground (or in the inclined edge streamline).  

The author has chosen the shortening term "exponentially reduced reflection (mirroring)" for this 
procedure and uses the abbreviation ERR. 

In the case of the regular cosine-waves provided here, the resulting magnitude of the velocity Wr,i  
(for the respective layer depth i) changes continuously during the particle movement on an ellipse. 

At the water surface, the maximum velocities are assigned to the wave crest or the wave trough, 
while the minimum velocities are vertically oriented and relate to the phases of the intersection of 
the wave profile with the reference horizon (still water level respectively). The same applies corre-
spondingly reduced for the layer depths below. 

Because of the exponentially decreasing orbital circle diameters with the water depth, for the in-
vestigations of the flow field advantageous layer depths with equal distances should be chosen. In 
the present case, however, this is partially realized only in approximation. 

In the following, the graphically vector addition is shown as an example for the layer depth d2, for 
the water level d0 and for the channel floor d3, cf. Fig.5. 

For the distinction from the 4 inclined mirror axes II, III, IIIa and IV examined below at the inclined 
slope level, see Fig.12, the configuration with vertical mirror axis in Fig. 5 was designated with Ro-
man I. 

The reference to this, as well as to the other mirror axes mentioned above, is given separately by a 
dot for the water depths in the index concerned. 

For the layer depth d2.I = 0.412m (corresponding to the coordinate ξ = 0.214m), the graphic con-
struction of the orbital path and the resulting orbital vectors corresponding to the position on this 
changing orbital pathway can be taken from Fig. 8. 
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Fig. 8: Graphic determination of the elliptical orbital path for a shallow sea. Mirror axis of con-
figuration I. Special case of vector addition for the ratio D2.I/D4.I = 2/1, which results for the 
layer depth d2.I = 0.412m according to the coordinate ξ = 0.214m and the exponentially re-
duced reflection (ERR) of the orbital motion at ξ = - 0.214m (below the ground). Thus, the 

relationship W2 = 2W4 applies to the circumferential velocities. 

 

Again, in this case, the resulting values for the maximum and minimum orbital velocity vectors are 
given depending on the local circular circumferential velocity. In addition, the graphical vector ad-
dition of the vectors W2 and W4 (dark red) is shown for the horizontal phase angles Θ = +45⁰ and. 
Θ = - 45⁰, the resulting value of which indicates the magnitude and direction of the tangent to the 
resulting ellipse. The reference points for the other resulting velocity vectors (brown, light green, 
blue) at the sought ellipse are also found by mathematical-graphical vector additions or by sym-
metry considerations, so that the elliptical orbital path can be entered into the velocity vector plan 
with great accuracy. 

 

Fig.09: Graphic determination of the elliptical orbital path for a shallow sea with flat ground. 
Mirror axis of configuration I. Vector addition for the ratio D0.I/D6.I = 0.3m/0.0375m = 8/1, 

which results for the still water level according to the coordinate ξ = d0.I = 0.626m and the re-
flection of the orbital motion at ξ = -0.626m (below the ground), cf. Fig. 5.  
Thus, the relationship W0 = 8W6 applies to the circumferential velocities. 
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As a special case according to the boundary condition on the bottom, once again the horizontal 
linear polarized oscillation results from the superimposition of two equal orbital circles but opposite 
circumferential velocities.  

Their maximum velocities can in turn be indicated with the 2-fold amount of the generating circular 
movements on the ground depending on W3 with 2W3,, cf. Fig.7. The absolute amounts for this 
purpose, as also those for the following remaining layer depths of the mirror axis I with the indices 
2, 1 and 0, are to be found in Table 1. 

The graphical-computational vector additions of the two circular opposite orbital velocities in Figs. 
8 and 9 thus provide not only the elliptical orbital curves but also the magnitudes of the resulting 
orbital velocities. The shape of the trajectories could be adjusted very precisely to the totality of 
the tangential velocity vectors by means of a drawing program. 

In contrast to the method of the ellipse construction according to Phillipe de la Hire, which is based 
on the use of the two vertex circles, the generating orbital circuits are used here for the represen-
tation of the elliptical orbital path in such a way that the long horizontal half-axis consists of the 
sum of the radii of both orbital circles and the short vertical half-axis b results from the difference 
of the latter. 

With regard to the extreme values of the orbital velocities, the following applies: 

The maximum (horizontal) orbital velocities on the ellipse are the sum of the circular orbital veloc-
ities involved and the minimum (vertical) orbital velocities result from their difference. 

Alternatively, the parameter representation for the ellipse curve is: 

    �𝑥𝑥 = 𝑎𝑎 cos 𝑡𝑡
𝑦𝑦 = 𝑏𝑏 sin 𝑡𝑡�  with  0 ≤ 𝑡𝑡 ≤  2π   (6) 

and for the linearly polarized particle oscillation at the horizontal bottom at depth d3 is a = r, so that 

    �𝑥𝑥 = 2𝑟𝑟3 cos 𝑡𝑡
𝑦𝑦 = 0 �  with  0 ≤ 𝑡𝑡 ≤  2π   (7) 

8. Phase shift at an inclined plane 
 
Since the linearly polarized vibrations at the fixed flow edges had represented the appropriate 
boundary condition both for the appearance of the positive Clapotis (with Δϕ = 0⁰) on the vertical 
wall and for the negative Clapotis on the horizontal ground (with Δϕ = 180⁰), the conclusion is in-
evitable that such vibrations also occur on inclined flat surfaces. 

The linear relationship in question between the phase shift Δϕ and the slope, is then: 

∆𝜑𝜑 = 180° − 2𝛼𝛼   (8a) 
    respectively  

 𝛼𝛼 = 90° − 0.5∆𝜑𝜑 (8b) 

Thus, for the slope 1:n = 1:2 corresponding to 26.57⁰, the associated phase shift between the inci-
dent and the reflected wave is  

∆φ𝑡𝑡ℎ𝑒𝑒𝑒𝑒 = 126.86°  

cf. Fig.10. 
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In fact, this value of the phase shift is almost exactly the same as that found by the author in [1] for 
the reference wave specified here and there at a slope 1: 2. Therefore the phenomenon of the 
phase shift as a component of the Complex Reflection Coefficients (CRC) can now also be regarded 
as theoretically verified. The pictorial representation characteristic of this situation is here Fig. 11. 

It should be mentioned that the energy values shown for partially standing partial waves also doc-
ument the horizontal wave asymmetry occurring with approach to the embankment structure. 

For this reason, in the present case, the phase shift of two measured values is defined such that 
their mean value is 

    Δ𝜑𝜑 =  132.6°+123.2°
2

 = 127.9° ≈ 126.86°                                 (9) 

If, alternatively all 5 partial waves of the spectral core range considered in (Büsching, 2011) and 
(Büsching, 2012) are taken into account in the same way, the arithmetic mean is obtained for this 
purpose: 

Δ𝜑𝜑 = 132.00⁰ ≈ 126.86° . 

It should be noted that the (small) deviation from the former can be explained not only from the 
relative displacements of the 5 partial waves to each other and the frequency-dependent compres-
sions documented in Fig. 11, but also rounding errors specifically in the determination of the lengths 
of the partial waves may be mentioned. 

 

Fig.10: Phase jump Δϕ[⁰] between incident and reflected wave as a linear function 
 of the slope angle α[⁰]. 
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Fig.11: To determine the length L and the phase difference Δϕ between incident and  
reflected wave using the example of the partial wave of the frequency range 

0.4875Hz ≤ f ≤ 0.51875Hz at a flat slope 1:2. As a result of the horizontal wave asymmetry of 
the almost breaking waves (characterized by ηmax –  ηmin < L/4), the formulas (10a) and (10b) 

provide two different results for the phase shift ∆ϕ = 132.6⁰ > 123.2⁰.  
Further explanation in (Büsching, F., 2012 [1]) or (Büsching, F., 2011 [8]). 

 
According to the author's research, the phase shift can be obtained from the application of the 
energy values calculated above the distance of IP, using spectrum analysis. To do this, the distances 
of the IP-nearest energy maximum (characterized by an imperfect oscillation loop) η𝑚𝑚𝑚𝑚𝑚𝑚    and the 
adjacent energy minimum (characterized by an imperfect vibration node) η𝑚𝑚𝑖𝑖𝑚𝑚 , have to be meas-
ured in Fig.11. The approximate phase difference then results from the mean of the formulas (10a) 
and (10b): 

  Δϕ[°] = 360 �1 − 2η𝑚𝑚𝑚𝑚𝑚𝑚
𝐿𝐿

�                                                                      (10a) 

  Δϕ[°] = 180 �1 − 4η𝑚𝑚𝑖𝑖𝑛𝑛
𝐿𝐿

�                                                  (10b) 

Since the phase shift parameter ∆𝜑𝜑 according to equation (8a) contains that of the ground inclina-
tion 𝛼𝛼, the complex reflection coefficient (CRC) can now also be regarded as a transformation pa-
rameter for waves over decreasing water depth. 
Together with the inland shift of higher frequency energy components (short-waves) compared to 
lower-frequency components (longer-waves) documented in Fig. 11, this could in future also pro-
vide the basis for a paradigm shift in the treatment of the wave deformation in the area of decreas-
ing water depth. For now, profile deformations of waves at changing inclination angles of the sea-
bed in the surf area can theoretically (and vividly) also be attributed to vibration interferences. 
In particular, higher-order approaches to describe wave deformation should also be reviewed with 
regard to the use of the Phase Shift parameter.  
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9. Graphical and mathematically accurate addition of orbital velocity 
vectors with respect to slope 1: 2. 
 
 

 

Fig.12: Overview of elliptical orbital movements in the area of limited water depth using the 
example of a smooth slope inclined 1: n = 1: 2 in the wave channel. The results for investiga-

tions on the mirror axis I to IV are shown. Calculations with regard to an additionally in-
cluded mirror axis IIIa between axes III and IV are not taken into account here for drawing 
reasons. Explanations of the method of superimposition used in the "exponentially reduced 

reflection" of orbital kinematics are given below. 

 

The basic input data, for the rotated elliptical orbital paths in Fig. 12, are shown in the illustrations 
in Figures 13 to 16. In each case, the underlying vector plan is shown with respect to the orbital 
velocity vectors to be superimposed. Accordingly, 8 phase points (with angular distances of 45⁰) on 
the orbital circles for the circular orbital velocity were assumed here, wherein the same color was 
chosen for the respective velocity vectors to be added respectively. Ordinal numbers of exponen-
tially reduced mirrored vectors are provided with apostrophe. 
The vector additions were also carried out here with the help of a drawing program both graphically 
and mathematically. Figures 13 to 15 show the graphical determination of the resulting vector by 
magnitude and direction in each case at the top right of the vector pair 1 + 1'.  
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Fig. 13: Graphical determination of the elliptical orbital paths above the slope 1: n = 1: 2, 
(corresponding to α = 26.57⁰). Mirror axis of configuration II. Vector addition for the ratio 

D0.II/D4.II  =  0,300m/0,075m = 4, which results in the water level (d0.II = 0.0m) corresponding 
to the coordinate ξ = 0.412m and the reflection of the orbital motion at ξ‘ = -0.412m (below 
the inclined ground), cf. Fig.12. Thus, the relationship W0 = 4W4 applies to the circumferen-

tial velocities on the elliptical path. 

 

 

Fig.14: Graphical determination of the elliptical orbital paths above the slope 1: n = 1: 2, (cor-
responding to α = 26.57⁰). Mirror axis of configuration II. Vector addition for the ratio 

D1/D3=  0.211m/0.107m = 1.97, which results in the water level (d1.II = 0.212m) corre-
sponding to the coordinate ξ = 0.2m and the reflection of the orbital motion at ξ‘ = -0.214m 
(below the inclined ground), cf. Fig.12. Thus, the relationship W0 = 4W4 applies to the cir-

cumferential velocities  
on the elliptical path. 
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Fig. 15: Graphical determination of the elliptical orbital paths above an inclination 1: n = 1:2 
corresponding to α = 26.57⁰. Mirror axis of configuration III. Vector addition for the ratio 

D0/D2  =  0.300m/0.152m = 1.97 of the water level (layer depth d0.III = 0.0m corresponding 
to the coordinates ξ = 0.212m  and the reflection of the orbital motion at ξ‘ = -0.200 (approxi-
mate below the inclined ground), cf. Fig.12. Thus, the relationship W0 = 1.97W2 applies to the 

circumferential velocities. 

 

Fig. 16: Representation of the linearly polarized particle vibration at the intersection (IP) of 
the still water level (SWL = d0.IV ) with the slope. 

When the water depth decreases inland, the reflection can be carried out at the intersection IP of 
the slope with the still water level (confluence of the edge streamlines of the still water level and 
slope) under the specification of a fictitious incident wave height, cf. Fig.16. 
Referred to IP (= coordinate origin) the circular orbital velocities Wi are superimposed to the re-
spective same-colored (dashed) opposite rotating velocities Wi‘, mirrored at the inclination surface. 
The result is a linearly polarized particle oscillation at the slope surface with maximum elongations 
of ± D0 and maximum velocity magnitudes of ± 2W0 when swinging through point IP. 
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From the diagram it is also recognizable that in the case of an inclined mirror surface, the position 
vector of the mirrored point on the orbital path against the vertical starting point vector of the 
velocity vector W01 around the angle of the phase jump is: ∆𝜑𝜑 = 180° − 2 · 𝛼𝛼° (formula 8a). 
In addition, Tab. 1 shows the schema for the mathematically exact addition of the orbital velocity 
vectors involved in the exponentially reduced mirroring as an example for two consecutive pairs of 
base positions on the orbital paths of the Fig.15. The upper table concerns the base positions with 
the location vector angles 450⁰ and 323.14⁰, and the lower table the base positions with the loca-
tion vector angles 495⁰ und 278.14⁰.  
Thus, for the complete wave cycle in the same successive table calculations, the input angle for the 
bases of the incoming orbital velocities is equal to the positive amount of the selected base point 
angle distance (here 45⁰) and reduce it by the same amount for the mirrored orbital velocity. The 
tabular calculation is based on the decomposition of the orbital velocity vectors into their longitu-
dinal and transversal components. The condition is that the velocity moment (made up from veloc-
ity vector and vertical distance from the coordinate origin (lever) (here: 0.743) is the same for all 
positions on the ellipse. The comparison of the results obtained graphically on the one hand and 
precisely mathematically on the other hand shows that the accuracy of the former seems quite 
sufficient. As an indication of this, it may also be considered that the successive, tabularly tangent 
inclination angles of the resulting orbital velocity vectors β1 = 17.28⁰ or β2 = 32.79⁰ fall below the 
graphically determined slope inclination β ≈ 26.5⁰ only by -9.2⁰ respectively exceed it by +6.29⁰ 
only, cf. Fig.15. 

Tab. 1: Schema for the mathematically exact addition of the orbital velocity vectors involved 
in the exponentially reduced mirroring (ERR). 

 

Phase Points Phase point
1+1'  (d0.III) angle Magnitude πD/T

Geschwindigkeiten [⁰] [ m/s ] Xi Yi xi yi Xiyi Yixi Xiyi-YiXi
i=1, incident wave: 450 W0,III=1 1.000 0.000 0.000 1.000 1.000 0.000 1.000
i=2, mirrored wave: 323.14 W2,III'=W0,III/1,97 0.304 0.406 0.406 -0.304 -0.092 0.165 -0.257
Components or moment sums 1.304 0.406 0.908 0.165 0.743
Quadrates: 1.701 0.165
Squared sums QS: 1.865
Root QS = resulting magnitude: 1.366
Moment M(0)= Sum (Xi*yi - Yi*xi): 0.743
Lever=M/R: 0.544
Equation of the resultant : 0 = M(0) +x*Ry - y*Rx y=(Ry/Rx)*x+M(0)/Rx = tanβ*x +M(0)/Rx 

 tan β = Ry/Rx: 0.31105225 arctan: 0.30157 Angle β [⁰]: 17.28
Tangents to the ellipse Normal form: y = 0.31105 x  + 0.570

Axis segment shape: 1= x/ -1.831 +y/ 0.570

Stützpunkte Phase point
2+2'  (d0,III) angle Magnitude πD/T

Geschwindigkeiten [⁰] [ m/s ] Xi Yi xi yi Xiyi Yixi Xiyi-YiXi
i=1, incident wave: 495 W0,III=1 0.707 0.707 -0.707 0.707 0.500 -0.500 1.000
i=2, mirrored wave: 278.14 W2,III'=W0,III/1,97 0.502 0.072 0.072 -0.502 -0.252 0.005 -0.257
Components or moment sums 1.209 0.779 1.438 0.248 -0.495 0.743
Quadrates: 1.462 0.607
Squared sums QS: 2.068
Root QS = resulting magnitude: 1.438
Moment M(0)= Sum (Xi*yi - Yi*xi): 0.743
Lever=M/R: 0.517
Equation of the resultant : 0 = M(0) +x*Ry - y*Rx y=(Ry/Rx)*x+M(0)/Rx = tanβ*x +M(0)/Rx 

 tan β = Ry/Rx: 0.64424723 arctan: 0.57232 Angle β [⁰]: 32.79
Tangents to the ellipse Normal form: y = 0.64425 x  + 0.615

Axis segment shape: 1= x/ -0.954 +y/ 0.615

Datum = Coordinate origin (0) = Circle center.   Phase point angle distances : 45⁰.

Resulting orbital velocities on rotated elliptical orbital paths above water depth d0.III
Vector addition for phase jump ∆𝜑𝜑=126.86° corresponding to the slope inclination α=26.57⁰

Datum = Coordinate origin (0) = Circle center.  Phase point angle distances : 45⁰

Resulting orbital velocities on rotated elliptical orbital paths above water depth d0.III
Vector addition for phase jump ∆𝜑𝜑=126.86° corresponding to the slope inclination α=26.57⁰

Circumferential velocity Phase point
Components coordinates

Circumferential velocity Phase point
Components coordinates
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Tab. 2: Compilation of maximum and minimum numerical orbital circle data for the mirror  
axes I to IV relative to the natural dimensions of the wave channel. 

 

 
 
 

10. Systematic consideration of the orbital velocities and the water level 
deflections ζ depending on the relation of the seafloor inclination α or 
the phase jump Δϕ in relation to the water surface. 

 

With the intention of presenting the formalism of the "exponentially reduced mirroring" (ERR) 
method for the whole range of eligible seabed inclinations between 0⁰ and 90⁰ (0 ≤ α ≤ 90) or dis-
tinguishing between positive or negative reflection, in the following, the subdivision of the regular 
wave cycle to 16 phase points with angular distances of 22.50, already used for the tabular calcula-
tions is now generally used.  

Water- Circle- Ellipse Wave Comment
Indices depth diameter Circle inclined height
 i or n di[m]  Di[m] Wi[m/s] Formula Magnitude Formula Magnitude β⁰ H|H'[m]

 [m/s]  [m/s]
0 0.000 0.300 0.470 ±1.125W0 horizontally 0.529 ±0.875W0  vertically 0.411 0 0.26 Fig.09 
1 0.212 0.211 0.333 ±1.25W1 horizontally 0.420 ±0.75W1 vertically 0.248 0
2 0.412 0.152 0.240 ±1.5W2 horizontally 0.372 ±0.5W2 vertically 0.120 0 0.076 Fig.08
3 0.626 0.107 0.169 ±2W3 horizontally 0.338 0.000 0 Ground
4 0.840 0.075 0.118
5 1.040 0.054 0.085
6 1.252 0.038 0.060

Water- Circle- Ellipse Wave Comment
Indices depth diameter Circle inclined height
i or n di[m]  Di[m] Wi[m/s] Formula Magnitude Formula Magnitude β⁰ H|H'[m]

 [m/s]  [m/s]
0 0.000 0.300 0.470 ±1.25W0 slope parallel 0.588 ±0,75W0 slope vertically 0.353 26.57 0.26 Fig.13 
1 0.212 0.211 0.333 ±1.5W1 slope parallel 0.500 ±0.50W1 slope vertically 0.166 26.57 0.19 Fig.14 

2 0.412 0.152 0.240 ±2W2 slope parallel 0.480 0.000 26.57 Ground

3 0.626 0.107 0.169
4 0.840 0.075 0.118

Water- Circle- Ellipse Wave Comment
Indices depth diameter Circle inclined height
i or n di[m]  Di[m] Wi[m/s] Formula Magnitude Formula Magnitude β⁰ H[m]

 [m/s]  [m/s]
0 0.000 0.300 0.470 ±1.5W0 slope parallel 0.705 ±0.W0 slope vertically 0.230 26.57 0.245 Fig.15 
1 0.212 0.211 0.333 ±2W1 slope parallel 0.666 0.000 26.57 Ground
2 0.412 0.152 0.240

Water- Circle- inclined Wave Comment
Indices depth diameter height
i or n di[m]  Di[m] Wi[m/s] Formula Magnitude Formula Magnitude β⁰ H[m]

 [m/s]  [m/s] Fig.16

0 0.000 0.300 0.470 ±2.0W0 slope parallel 0.940 26.57 0 Ground 

Compilation of numerical  orbital  path data

maximum minimum

minimum

maximum minimum

maximum

Orbital paths velocities

Orbital paths velocities

Orbital paths velocities
Mirroraxis III

Mirroraxis II

Mirroraxis I

Mirroraxis IV
Orbital paths velocities

linearly polarized vibrational movement
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Thus, the angle of division 22.5⁰ differs only slightly from the actual slope angle α = 26.57⁰ of the 
slope examined in the model on the one hand, and thus fits sufficiently precisely with the consid-
eration of the subsequent intended systematic examination of slope inclinations with multiples of 
22,5⁰. 

Accordingly, in addition to the phase jump ∆𝜑𝜑 = 135⁰  (α = 22.5⁰), which is discussed in Fig.18, the 
phase jumps of ∆𝜑𝜑 = 90°  (α = 45°)  and ∆𝜑𝜑 = 45° (α = 67.5°)  are also considered in more detail, as 
well as their classification with regard to positive or negative Clapotis waves.  

For reasons of comparability, the reference to the previously used layer depths and the associated 
orbital circle diameters to be superimposed is maintained. 

Accordingly, the shape of the ellipses thus determined (represented by the lengths of their axes) 
does not change, while the long main axis takes over the slope angle of the seabed (or the (vertical) 
edge streamline).  

The extreme values of the orbital velocities given in Table 2 are therefore also valid for the steeper 
slopes considered. 

In addition to the elliptical orbital velocities that change with the water depth (mirror depth), the 
profile changes at the water surface caused by the respective phase shifts are determined below. 

The calculation was (also) done here for the orbital vectors and their tangents with respect to the 
coordinate origin. Only the plotting of the ellipse tangents and the fitting of the ellipse is therefore 
subject to the low inaccuracy of the drawing. 

Different from the color-coded marking of the mirrored vectors used above  - due to the greater 
division of the wave cycle to 16 phase points - for the vector pairs with equal amounts and opposite 
directions the same colors are used; for example, black for the orbital vectors marked with 2 and 
10, cf. Fig. 17.  

 

 

Fig.17: Comparison of only slightly different elliptical orbital paths on the surface at position 
d0.II Left: according to the ground inclination 26.57⁰ with respect to the ground inclination 

also present in the hydraulic model, based on 8 phase points (Fig.13) and right with respect 
to the slightly different ground inclination 22.5⁰ based on 16 phase points. 

Comparable to the representations of Figures 6 and 7, the following is the consideration with re-
spect to the continuous water depth decrease according to the seafloor inclination α = 22.5⁰ 
(1:n=  1:2,414) first for the layer depths d2.II =  0.412m and d1.III  = 0.212m shown in Fig.18, where 
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linearly polarized oscillation movements take place parallel to the slope as a result of the superpo-
sition of two equal opposite orbital circles. 
With respect to the interference resulting from the inclination of the slope α = 22.5° (< 26.57°) the 
phase difference according to formula (8a) is: 

∆𝜑𝜑 = 180° − 2 · 22.5° = 135°.   

 

 

Fig. 18: Due to the inclination 202.5⁰ or 22.5⁰ (< 26.57°) the horizontal reflection with phase 
jump of ∆𝜑𝜑 = 135°  (>126.86°) results in a linearly polarized oscillation on the ground in the 

layer depths d2.II = 0.412m and d1.III = 0.212m . 
 
The computational addition of the velocity vectors on the illustrated orbital circuit is again carried 
out analogously to that of the already treated above phase differences (phase jumps) taking into 
account the relevant rotation angle of the reflected compared to the incoming orbital vectors of 
the wave.  
Thus, for all continuous oscillation phases of a wave cycle on the ground, the expected result of a 
linearly polarized oscillation at the angle of the flow boundary with the angle according to formula 
(8b)  is: 
 

𝛼𝛼 = 90° − 0.5∆𝜑𝜑 = 22.5°(𝑜𝑜𝑟𝑟  202.5°), cf. Table in Fig.18 
 

11. Analytical treatment of the phase jump depending on the variable in-
clination of the slope 
 
Taking into account the phase difference Δϕ on the one hand and the exponentially reduced mir-
rored orbital circle diameter on the other, the resulting water level deflections ζres and the magni-
tudes Wi which are based on the elliptical or on the linearly polarized orbital path velocities, can 



 
 
 

29 
 

also be determined formally by superimposition of properly phase-shifted cosine functions. This 
was done here by using the table calculation, cf. Figures 19 to 23. 
For this purpose, the circular orbital movement of the deep sea (the incident wave) is presumed 
and thus used as a scale in the sense of standardization as follows: 
  

• Magnitude of the circular orbital velocity Wcirc = 1 (= const.)  
• Wave height H = 1 corresponding to water level deflections – 0.5 ≤ ζcirc ≤ + 0.5. 

Following the concept of the ERR, the water level deflections ζ(d0.i) (with I ≤ i ≤ IV) result from the 
sums of the incoming and phase-shifted exponentially reduced mirrored orbital circle diameters. 
And the resulting orbital velocity magnitudes W(d0.i) are calculated from the component sums of 
the incoming and phase-shifted exponentially reduced mirrored velocities. 
The ordinate values obtained here as dimensionless magnitudes of unit functions can be converted 
at the end according to the above specified information into dimension-related wave heights or 
orbital velocities, cf. also Tab.2. 
In order to estimate the effect of the phase jump for the entire range of practically existing slope 
inclinations with respect to the water level deflections, to the orbital velocity magnitudes and to 
the orbital paths, the following 5 figures contain the results of such calculations for slopes α = 0⁰, 
α  =  22.5⁰, α = 45⁰, α  =  67.5⁰ und α = 90⁰, each in comparison to the incident wave from deep 
water. This contains 5 functions related to the wave cycle for the resulting water level deflections 
ζ(d0.i) and the resulting orbital velocity magnitudes W(d0.i). In addition there are approximate exam-
ples of the elliptical orbital paths belonging to ζ(d0.III) and the linearly polarized orbital paths be-
longing to ζ(d0.IV). Both to be compared to the circular orbital path of the specified unit-deep water 
wave ζ(d0.IV). The individual functions refer in principle locally to the intersection points of the des-
ignated mirror axis with the still water level and this in such a way that they show the (relevant) 
changes approaching the intersection point IP. 
Because of the fact that the diameters of the orbital circles involved depend on the local water 
depth only, in the analysis carried out here for all selected mirror depths ξ - instead of the above-
mentioned intersections - the still water level points vertically above the intersection of the ground 
with the respective mirror axis can also be considered to be reference points. 
In order to allow an undistorted insertion of the orbital paths related to the water level into the 
graphs of the calculated water level deflections, the vertical scale of the water level deflections also 
was applied (approximately) with regard to the horizontal coordinate axis. 
While in the individual graphs the considered parameters Wi, ζi and the corresponding orbital paths 
are commented on only separately in relation to the total wave cycle, in the following also a relative 
consideration between the 5 similar parameters of the 5 inclined slopes is carried out.  
It should be noted, however, that the presentation method used for the time being does not 
reflect a phase-compliant representation of the functions Wi(β) und ζi (β). 
In reality, the minima of the orbital velocity magnitudes occur at the same time as the extreme 
values of the water level deflections ζi and the sign change of the water level deflections is carried 
out in the same phase with the maxima of the Orbital velocity magnitudes. This means that, at 
all inclinations, the functions of the orbital velocity magnitudes Wi(β) in the wave cycle should 
appear shifted by 90⁰ in the direction of smaller or larger values (to the left, or right), which must 
be taken into account.  
A closed analytical formulation, which does not require this correction, should be reserved for an-
other article if necessary.  
In the comparative analysis, the theoretical limiting cases contained in Figures 19 and 23 are pre-
ceded by the positive and negative Clapotis shown. 
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Fig. 19: Unit orbital velocity magnitudes W(d0.IV) and unit water level deflections ζ(d0.IV) for 
the wave cycle of a positive Clapotis over deep water (d ≥ L/2) for the mirror depth of ξ = 

0.0m (d0.IV), and 4 partially positively reflected waves ζ(d0.IIIa), ζ(d0.III), ζ(d0.II), ζ(d0.I) for 
the fictional mirror depths 0.106m, 0.212m, 0.412m and 0.626m, as well as the associated or-

bital paths mentioned above. 
The commas in the numerical ordinate values should be read as points. 

 

Fig.20: Unit orbital velocity magnitudes W and unit water level deflections ζ for the wave cycle 
of partially positively reflected waves over a flat inclination of the slope α = 67.5⁰ for decreas-

ing mirror depths d(0.I) to d(0.IV). Orbital paths exemplify deep water (black) and mirror 
depths d(0.III) (red) and d(0.IV) (blue).  
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Fig. 21: Unit orbital velocity magnitudes W and unit water level deflections ζ for the wave cycle 
of partially positively reflected waves over a flat inclination of the slope α = 45⁰ for decreasing 

mirror depths d(0.I) to d(0.IV). Orbital paths exemplify deep water (black) and mirror depths 
d(0.III) (red) and d(0.IV) (blue). 

The commas in the numerical ordinate values should be read as points. 
Fig. 22: Unit orbital velocity magnitudes W and unit water level deflections ζ for the wave cycle 
of partially negatively reflected waves over a flat inclination of the slope α = 22.5⁰ for decreas-

ing mirror depths d(0.I) to d(0.IV). Orbital paths exemplify deep water (black) and mirror 
depths d(0.III) (red) and d (0.IV) (blue). 

The commas in the numerical ordinate values should be read as points. 
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Fig. 23: Unit orbital velocity magnitudes W(d0.IV) and unit water level deflections ζ(d0.IV) = 0 
for the wave cycle of the negative Clapotis ξ  (d0.IV) = 0.0m for the mirror depth ξ = 0.0m 

(d0.IV) and of 4 partially negatively reflected waves ζ(d0.IIIa), ζ(d0.III), ζ(d0.II), ζ(d0.I), for the 
4 fictious mirror depths 0.106m, 0.212m, 0.412m and 0.626m above flat ground, as well as the 

above-mentioned orbital paths, see  Fig. 12 
The commas in the numerical ordinate values should be read as points. 

 

When commenting on the functions shown, it should be noted that only the orbital movements at 
the water surface (the layer depth d (0.i)) are shown.  
The water depths d0.i used in Figures 19 to 23 are compared in the following to the mirror depths 
belonging to the mirror axes I to IV at the water level in the model to investigate the influence of 
the depth of the mirror ξ on the wave height (in particular over inclined edge streamlines).  

 
Associated  

water depth 
Mirror 
depth 

of ξ[m] 
d(0.IV) 0.00 
d(0.IIIa) 0.106 
d(0.III) 0.212 
d(0.II) 0.412 
d(0.I) 0.626 

 

In general, for all selected inclinations, the maximum oscillation amplitudes occur at the linearly 
polarized oscillations in the case of the mirror depth ξ = 0 parallel to the respective inclination. 
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ζ(d0.I) = ± 0.437. 0.3m =  0.131m
H = 0.26m, vergl. Abb. 09

maxW(d0.I) = 1.125W0 = 0.520m/s .
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In the case of positive Clapotis (PC), Fig. 19, this concerns the transverse particle movement on the 
vertical wall relative to IP. For this purpose, the respective functions are designated as d(0.IV) de-
pending on the parameter of the layer depth. 
If larger mirror depths ξ are selected, ellipses are created, whose axes grow perpendicularly to the 
vertical wall at the expense of the wall-parallel axes until the circular orbital movement of the in-
coming comparison wave is reached. 
This result becomes plausible when increasing distances from the vertical wall or from the vibration 
antinode are considered. 
The amplitudes of the water level deflections decrease from ± 1 of the pure transverse oscillation 
to ± 0.5 of the circular polarized oscillation and the maximum and minimum magnitudes of the 
orbital velocities occurring twice in the oscillation cycle change from W = 2 or W = 0 to the constant 
circular orbital velocity W = 1. 
As an example in Fig.19, on the one hand, the elliptical orbital path belonging to ζ(d0.III) is shown-
and, on the other hand the corresponding wave heights H[m] and the maximum orbital velocities 
W[m/s] are given for ζ(d0.IV) and for ζ(d0.I) using the above conversion data. For the functions 
ζ (d0. IIIa) to ζ(d0. I) it is possible to speak of partially standing positive Clapotis waves, since their 
two oscillation nodes with horizontal distances of Δβ = 180⁰ in the wave cycle are positioned also 
at the SWL.  
On the other hand, the theoretical negative Clapotis (NC), Fig.23, is assigned a linearly polarized 
horizontal longitudinal oscillation with variable velocities on the ground with magnitudes varying 
by W = 1 between 0 and 2. Their node positions (phases of missing velocity) are not initially recog-
nizable in the vibration cycle (as points of direction reversal), since the water level deflections (by 
definition) disappear over the entire oscillation cycle, ζ(d0.IV) = 0.  
If larger mirror depths are selected in the same way as for the positive Clapotis, ellipses are created 
here, whose long axes shrink parallel to the inclination in favor of the vertically growing axes until 
the orbital motion of the circular polarized incoming comparison wave is reached.  
This result becomes plausible if, conversely, the circular cosine wave coming in from the deep water 
is assumed to reach an area of decreasing water depth up to ζ (d 0.IV) = 0 at IP 
Then the orbital paths first deform to the described ellipses with their axes perpendicular to the 
inclination decreasing and the inclination-parallel axes increasing up to IP, where there results the 
linear polarized oscillating movement (comparable to the washing motion present after the wave 
breaking). 
The maximum and minimum magnitudes of the orbital velocities, occurring twice in the oscillation 
cycle, change from W = 2 respectively W = 0 to the constant circular orbital velocity W = 1. 
 
As an example in Fig.23, on the one hand, the elliptical orbital path belonging to ζ(d0.III) is shown) 
and, on the other hand the corresponding wave heights H[m] and the maximum orbital velocities 
W[m/s] are given for ζ(d0.IV) and for ζ(d0.I) using the above conversion data. 
For the functions ζ(d 0.IIIa) to ζ(d0.I) one can also speak about partially standing but in this case 
negative Clapotis waves, since also their two oscillation nodes with horizontal distances of 
Δβ = 180⁰ in the wave cycle are positioned in the SWL.  
 
The transition from positive total reflection (Fig.19) to negative total reflection (Fig.23), due to de-
creasing slope inclinations, is approximated by similar calculations for the inclination angles of 
α = 67.5⁰, α = 45⁰ and α = 22.5⁰ and is documented in the Figures 20, 21 and 22. 
 
As in the above cases, reference is made to the shift in the functions of the orbital velocity magni-
tudes W, the water level deflections ζ and the changes in the orbital paths.  
 
• The functions of the orbital velocity magnitudes W(β) as well as the water level deflections ζ(β) 

are shifted per decrease rate of the slope of Δα = 22.5⁰ by the numerically equal phase angle in 
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the wave cycle Δβ = 22.5⁰, so that the total number between positive and negative Clapotis 
results in the phase difference of 90⁰. 

• The oscillation nodes are defined (here) as points of ζK in the vibration cycle, the coordinates 
of which are contained in all functions ζ(d0.i) calculated for a particular slope. Remarkably, their 
positions are in pairs both horizontally and vertically dependent on the predetermined inclined 
edge streamline, cf. Table 3 and Fig. 24.  

 

Table 3: Vibration nodes 1 and 2 with horizontal phase angle distance of Δβ = 180⁰ and recip-
rocal positive or negative deviations from the still water level for slope inclinations 0 ≤ α ≤ 90⁰ 

depending on the slope inclination angle. 
 

 

 

 

Fig. 24: Node positions relative to the still water level at slope inclinations 0 ≤ α ≤ 90⁰. 
 

• In contrast to the vibration nodes of positive and negative Clapotis waves in the still water level 
in Fig. 19 and 23, at the partial standing waves shown in Fig. 20 to 22, the 2 adjacent nodes with 
distance of Δβ = 180⁰ differ from the SWL by alternating negative and positive but equal 

Slope Phase jump
α[⁰] Δϕ[⁰] β[⁰] ζK1(β) β[⁰] ζK2(β)
90 0 90 0 270 0

78.75 22.5 67.5 0.19 247.5 -0.19
67.5 45 45 0.354 225 -0.354
56.25 67.5 22.5 0.46 202.5 -0.46

45 90 0 0.5 180 -0.5
45 90 360 0.5 180 -0.5

33.75 112.5 337.5 0.46 157.5 -0.46
22.5 135 315 0.354 135 -0.354
11.25 157.5 292.5 0.19 112.5 -0.19

0 180 270 0 90 0

Node 1 Node 2 
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amounts from the still water level. This is the more the closer the inclination in question ap-
proaches the embankment angle α = 45⁰. In the latter case, the maximum node deviations are 
reached at the maximum node deviations of ζK = ± 0.5, which corresponds to the radius of the 
incoming circular wave. 

• In the case of the positive Clapotis, the node coordinates concern non-existent (vertical) water 
level deflections and, in the case of the negative Clapotis, node coordinates concern non-exist-
ent (horizontal) orbital velocities in the edge streamline. 

• The nodes of partially negative standing waves are exposed to magnitudes of orbital velocities 
with W  ≥ 1 and those of partially positive waves have orbital velocity amounts W < 1. 

12. Wave heights H of the functions ζ(d0.I) to ζ(d0.IV) for the angles of 
inclination α = 67.5⁰, α = 45⁰ and α = 22.5⁰ 

 

The following tables contain the numerical parameters required for the graphical representations.  
 
Tab. 4: Maximum amplitudes of the resulting unit water level deflections ζ (d0.i) with respect to 

all 5 investigated inclination angles α. 
 

 

 

Tab. 5: Natural-sized wave heights H[m] as a function of the mirror depth H = f(ξ)  
for the inclination of the α = 67.5⁰ 

 

 

  

ζ(d0.i) 0ᵒ 22.5ᵒ 45ᵒ 67.5ᵒ 90ᵒ
ζ(d0.IV) 0 0.38 0.71 0.92 1.00
ζ(d0.IIIa) 0.08 0.36 0.65 0.85 0.92
ζ(d0.III) 0.25 0.37 0.56 0.7 0.75
ζ(d0.II) 0.37 0.42 0.52 0.6 0.63
ζ(d0.I) 0.44 0.46 0.5 0.55 0.56
ζ(circ) 0.5 0.5 0.5 0.5 0.50

ζ(d0.i) ξ[m] = d Abst. x[m] ζmax H[m] H/d d/L
von IP

ζ(d0.IV) 0 0.00 0.92 0.55
ζ(d0.IIIa) 0.1045 0.04 0.85 0.51 4.88 0.03
ζ(d0.III) 0.209 0.09 0.70 0.42 2.01 0.06
ζ(d0.II) 0.418 0.17 0.60 0.36 0.86 0.11
ζ(d0.I) 0.627 0.26 0.55 0.33 0.53 0.17
ζ(circ) 0.50 0.30
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Tab. 6: Natural-sized wave heights H as a function of the mirror depth H = f(ξ)  
for the inclination of α = 45⁰ 

 

 

Tab. 7: Natural-sized wave heights H as a function of the mirror depth H = f(ξ)  
for the inclination of α = 22.5⁰ 

 

 

 Figures 25 and Fig.26 show the resulting wave heights in question depending on the horizon-
tal distance of IP above the respective slope.  

Fig.25: Wave heights H[m] above the distance of IP [m] with respect to the inclinations 
α =  67.5⁰ and α = 45⁰ (positive reflections). 

ζ(d0.i) ξ[m] = d Abst. x[m] ζmax H[m] H/d d/L
von IP

ζ(d0.IV) 0 0.00 0.71 0.43
ζ(d0.IIIa) 0.1045 0.10 0.65 0.39 3.73 0.03
ζ(d0.III) 0.209 0.21 0.56 0.34 1.61 0.06
ζ(d0.II) 0.418 0.42 0.52 0.31 0.75 0.11
ζ(d0.I) 0.627 0.63 0.50 0.30 0.48 0.17
ζ(circ) 0.50 0.30

ζ(d0.i) ξ[m] = d Abst. x[m] ζmax H[m] H/d d/L
 von IP

ζ(d0.IV) 0 0.00 0.38 0.23
ζ(d0.IIIa) 0.1045 0.25 0.36 0.22 2.07 0.03
ζ(d0.III) 0.209 0.50 0.37 0.22 1.06 0.06
ζ(d0.II) 0.418 1.01 0.42 0.25 0.60 0.11
ζ(d0.I) 0.627 1.51 0.46 0.28 0.44 0.17
ζ(circ) 0.50 0.30
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Fig.26: Wave height H [m] above the distance of IP [m] with respect to  
α = 22.5⁰ (negative reflection). 

 

Since, on the one hand, the water level deflections (WLD) are known for the positive Clapotis as-
signed by α = 90⁰, and on the other hand, the result for the negative Clapotis (NC) does not provide 
water level deflections for α = 0⁰, the representation here is limited to the inclination angle range 
in between (0⁰ < α < 90⁰). 
From the representations of the wave heights and tables 5 to 7 it can be seen that the reflection 
effect for the inclinations α = 67.5⁰ and α = 45⁰ rapidly decreases with the distance from IP increas-
ing, whereas, on the other hand, it essentially increases at the inclination of α = 22.5⁰. 
However, the wave height of the comparison wave H = 1 (ζ = ± 0.5) for deep water is approximately 
reached in the distance range studied only for the slope inclination of α = 45⁰. On the other hand, 
a much greater distance from the structure is required at the inclination of α = 22.5⁰, to which the 
height H(circ) of the incoming deep-water-wave is reached 
According to this, it can be assumed that the maximum WLD ζres or wave heights H ≥ H(circ) at incli-
nations α ≥ 45⁰ are to be assigned to the positive reflection, cf. Fig.25. At the inclination α = 22.5⁰ 
(Δϕ = 135 ⁰), however, the reflection is negative with the wave height H < H(circ), ,cf. Fig.26. 
 
A more in-depth discussion, including the changed node positions (see Table 3) is not carried out 
here for the time being. 
 

13. Magnitude and phase of complex reflection coefficients 
 
In summary, the meaning of the phase jump at differently inclined edge-streamlines can be recog-
nized also from pointer diagrams (in gaussian number plane) for the complex reflection coefficient, 
  𝛤𝛤 = 𝐶𝐶𝑟𝑟𝑒𝑒𝑖𝑖𝛥𝛥𝜑𝜑. 
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These were determined on the basis of the resulting functions ζres(d0.i, β) calculated above, as a 
functions of the phase shift Δϕ = 180⁰ - 2α, cf. formula (6a).  
Such diagrams are shown on the one hand with regard to the limiting case of the linearly polarized 
oscillating movements in the differently inclined boundary streamlines, whereby - with regard to 
the ERR - reference is made to the respective point of intersection IP of the inclined boundary of 
the flow field with the still water level (d0.IV = level depth ξ = 0). 
For the inclinations 0⁰ ≤ α ≤ 90⁰ the magnitudes are obtained from Cr = 1·cosΔϕ negative for slope 
angles 0⁰ ≤ α < 45⁰ and positive for 45⁰ ≤ α ≤ 90⁰. 
So, the striking result is: 
For ideally smooth slopes, theoretical complex reflection coefficients are obtained, which depend 
only on the preselected slope.  
The angle α = 26.57ᵒof the slope studied in the model, corresponding to the phase shift ∆ϕ = 
126.87ᵒoccurs together with the magnitude Cr = 1٠cos ∆ϕ = 1 cos 126.87ᵒ = -0.60, cf. Fig 27.  
For more distant positions of IP (with elliptical orbital paths) the functions ζ(d0.III) where the ratio 
of the orbital circle diameter D2/D0 = 0.152/0.3 ≈ 0.5 is selected with respect to the surface. 

Thus, the magnitudes Cr of the CRC are only about half as large, i.e. Cr = 0.5·cosΔϕ. For both cases, 
the prominent real parts of the CRC for the phase differences Δϕ = 0⁰, Δϕ = 45⁰, Δϕ = 90⁰ (α = 45⁰), 
Δϕ = 135⁰ and Δϕ = 180⁰ are to be seen in the respective Figures 27 or 28. 

 

Fig. 27: Pointer diagram for the representation of complex reflection coefficients CRC  
Γ  = 𝐶𝐶𝑟𝑟𝑒𝑒𝑖𝑖𝛥𝛥𝜑𝜑 for phase jumps 0⁰ ≤ Δϕ ≤ 180⁰ (left value) corresponding to slope angles 

90⁰ ≥ α ≥ 0⁰  (right value) with respect to the exponentially reduced mirroring at the intersec-
tion IP of the still water level (d0.IV) with the slope in question. 
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Fig.28: Pointer diagram for the representation of complex reflection coefficients CRC  
Γ  = 𝐶𝐶𝑟𝑟𝑒𝑒𝑖𝑖𝛥𝛥𝜑𝜑 for phase jumps 0⁰ ≤ Δϕ ≤ 180⁰ (left value) corresponding to slope angles 

90⁰ ≥ α ≥ 0⁰ (right value) with respect to the exponentially reduced mirroring at the Intersection 
of the still water level (d0.III) with the mirror axis III. 

14. Discussion and outlook 

In the past, the topic of phase shift between incident and reflected waves has been dealt with em-
pirically, mostly in connection with coastal protection structures in shallow water. The investiga-
tions of Sutherland and O'Donogue [9] can be taken as a representative example. With reference 
to 20 sources they come to the conclusion that the phase shift is determined by a dimensionless 
number χ3. The latter comprises the parameters slope inclination α, the wave period T, the water 
depth dt at the foot of the slope and the wave direction. 

In contrast to this, in the present theoretical consideration, which is oriented on the fundamentals, 
the phase shift Δϕ, with regard to its use in the limited water depth range, is only linearly dependent 
on the slope inclination.  

With regard to the transferability to nature, the result should have the claim of priority considera-
tion over the other parameters mentioned above, even if only the case of retroreflection is covered 
here. 

As is well known, the term Clapotis has so far been used for an approximately perfectly standing 
wave seaward of a vertical wall (in limited water depth for d/L < 0.5). Its streamline image shows 
on the one hand the doubling of the wave height (to 2H) at the structure compared to the incident 
wave height H and shows as a second feature the maximum horizontal flow velocity at the bottom 
below the node of oscillation. 

On the other hand, the author refers the term "positive Clapotis" more precisely only to the vertical 
linearly polarized transverse oscillatory motion of the water particles of the perfectly standing wave 
at their antinodes (or at the vertical wall) and defines it as the theoretical boundary condition in 
deep water. 
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The theoretical limit condition in shallow water, on the other hand, is the horizontal linearly polar-
ized longitudinal oscillatory motion of the water particles of an advancing wave at the seafloor, 
which is called "negative Clapotis".  

When the water depth decreases at an inclined plane, such a negative Clapotis occurs at the inter-
section IP of the slope inclination with the still water level, where the latter theoretically coincides. 

If, in this context, the 3-dimensional orbital field in the area of decreasing water depth is 
regarded as an oscillating continuum whose degrees of freedom are determined by the 
boundaries, the restriction to the vertical plane containing the direction of progress of the 
incident wave is sufficient for the retroreflection considered here (especially in a wave 
channel). 

Accordingly, two degrees of freedom can be assigned to the circularly polarized waves incident from 
deep water (corresponding to their two oscillations linearly polarized perpendicular to each other, 
cf. chapter 3). These change in their orientations as soon as ground contact becomes effective. Then 
the inclination of the sea floor as a boundary condition is responsible both for the development of 
the inclination-parallel linearly polarized particle oscillation in the boundary streamline on the sea 
floor and for the degree of expression of the parallel or right-angled oscillations in the current field 
above the boundary streamline. Accordingly, with decreasing depth the slope parallel main axes of 
the rotated elliptical orbital movements increase at the expense of the slope perpendicular main 
axes.  

According to vibration theory, only those parts of the two degrees of freedom that change with 
decreasing depth are taken into consideration, which depend on the slope inclination α and thus 
on the phase shift Δϕ. Furthermore, the number of degrees of freedom is reduced from two to one 
at the point IP, with the consequence that the total energy now corresponds to the linearly polar-
ized oscillation of the negative Clapotis alone. 

A significant approximation to this theoretical case can therefore only be achieved in nature if the 
wave transformation does not occur with a striking wave breaking process. This is most likely to be 
the case with the surging breaker. In the latter case, the least amount of energy is converted into 
turbulence and heat, with the result that it also generates the largest wave run-up. Of importance 
in this context is the fact that there is a coupling between the two degrees of freedom of the ellip-
tical orbital motion [10] (Büsching, 1991). 

In the case that the latter is influenced by interfering bodies (bluff bodies) on the inclined revetment 
surface, this is due to the mechanism of the vortex-generated losses approximately parallel and 
perpendicular to the inclined revetment surface. 

In contrast, an even more effective wave damping is not only due to the additional deflection, entry 
and exit losses of the flow into and out of the cavity in question in the "Hollow Cubes" developed 
by the author [11], but also to the inflow into the cavity which is globally oriented perpendicular to 
the "washing movement".  

With regard to the wave transformation at plane inclined reflection surfaces, it is expected that 
targeted systematic model investigations will fundamentally confirm the significance of the phase 
difference Δϕ. between incident and reflected waves as a function of the slope inclination α. 
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